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Robust Control for Rotational Inverted Pendulums Using Output 
Feedback Sliding Mode Controller and Disturbance Observer 
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Busan, Korea 

Jong Shik Kim* 
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This paper presents a system modeling,  control ler  design and implementat ion for a rotat ional  

inverted pendulum system (RIPS) ,  which is an under-actuated system and has the problem of  

unat tainable velocity state. Two  control  strategies are applied to the RIPS. One is a sliding mode 

control  method using the parameterizat ion of  both the hyperplane and the compensator  for 

output  feedback. The other is the disturbance observer which estimates disturbance and some 

model ing errors of  RIPS with less computa t ional  ettbrt. Some simulat ions and various kinds of  

experiments are performed in order to verify that the proposed control ler  has the ability to 

control  RIPS whose velocity is assumed to be unavailable.  The results of  the simulat ions and 

experiments show that the proposed control  system has superior  performance lbr disturbance 

rejection and regulation at certain initial condi t ions as well as the robustness to model  

uncertainties. 

Key W o r d s : O u t p u t  Feedback Sliding Mode Control ler ,  Disturbance Observer, Rota t ional  

Inverted Pendulum 

I. Introduct ion 

Rotat ional  inverted pendulum system (RIPS) 

is a typical under-actuated system, which has 

fewer inputs than the degree of  freedom. The 

under-actuated system is very useful to low the 

cost of  automatic  control led systems or  robot  

systems which are required to minimize the num- 

ber of  actuators to make less power, smaller mass, 

and lower cost. Furthermore,  d i rec t -dr ive  mani- 

pulators that have some failed actuators in the 

inaccessible space may be an under-actuated sys- 

tem. It is also important  to overcome these kind 

of  troubles. Earl ier  studies of  under-actuated 

* Corresponding Author, 
E-mail : jskim @ pusan.ac.kr 
TEL : +82-51-510-2317; FAX : +82-51-512-9835 
School of Mechanical Engineering and RIMT. Pusan 
National University, Busan, Korea. (Manuscript Re- 
ceived March 12, 2003: Revised June 25, 2003) 

systems had mainly been tbcused on single or 

double  flexible inverted pendulums. Recently 

there are many active studies for the paralleled or 

rotat ional  inverted pendulums,  as bench mark test 

['or applying the various kind of  control  laws, 

which have similari ty with rocket launchers, 

traveling robots, attitude control  of  the artificial 

satellites, etc. 

Sliding mode control  method is suggested for 

the robustness to have invariance properties not 

to be affected by the matched uncertainties and 

possibilities to have reduced order  motion,  which 

is apparently independent  on the control.  In this 

control  method, it is important  to select the so-  

called sliding surfaces to provide an appropr ia te  

and stable sliding motions (Son et al., 1998). 

Many workers have designed control ler  by as- 

suming lull states to be available in selecting 

control  laws. But in practice not all states are 

available. In order to overcome this difficulty, an 

observer can be used to generate estimates of  the 
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unavailable internal states or to select a sliding 

surface with only output information. (Edward 

and Spurgeon, 1995) proposed output feedback 

sliding mode control method by using linear 

control structures employed (Ryan and Corless, 

1987). In order to allocate arbitrary pole place- 

ment for sliding mode dynamics, the Kimura- 

Davidson condition should be satisfied (Bag et 

al., 1997). For overcoming this difficulty Edward 

and Spurgeon proposed the compensator and Fig. 1 
switching function matrix to be parameterized. 

In this paper, output feedback sliding mode 

control with disturbance observer (OFSMC/DO) 

is proposed for good performance and robust- 

ness of a RIPS. A disturbance observer, which 

estimates the external disturbance and some mo- 

deling errors of RIPS, is effective to compensate 

the effects of the unmatched uncertainties of the 

control system and is required less computational 

effort. Furthermore this controller contains the 

reduced order observer to attenuate the measure- 

ment noises. And system parameters are estimated 

by the signal compression method and experi- 

mentations. In order to show the effectiveness 

of the proposed control method, simulation and 

experiment are performed and results are com- 

pared with those of simulation and experiment of 

the full-state feedback LQ control and output 

feedback sliding mode control without disturb- 

ance observer (OFSMC) systems. The results of 

simulation and experiment show that the pro- 

posed control system has good regulation per- 

formance in the severe initial positions and good where 

robustness to arbitrary disturbances. 

2. System Modeling and Parameter  

Estimations 

Figure 1 shows the schematic diagram of the 

RIPS. The RIPS consists of a vertical pendulum 

that is 21 long, hinged at the end of the hori- 

zontal radial arm of length, R, which is directly 

connected to the shaft of a DC motor. Torque, 

fr,  of the DC motor is the control input of the 

system, and the pendulum angle, ¢, and the hori- 

zontal arm angle, 0, as measured by encoders are 

the outputs. Only viscous friction is considered 

- ' - s h a f t  

0 

Schematic diagram of the rotational inverted 
pendulum 

in the model and all other frictions are treated 

as external disturbances, which are considered 

through a disturbance observer. Then, the equa- 

tion of motion for the RIPS can be derived by the 

Lagrangian method as follows: 

I J~+m(U +[Zsin 2 ¢i' mIR cos ¢1101, 
mlR cos ¢ ]m±ml 2 JL~J -~ 

[ c+mlZsin2¢¢-mIRsin¢¢![i]+[ glsin¢l=[~l (l) 
m / x sin ¢ c0s ¢ O 0 - m 

where m, c, Jarm and .[Pen a r e  the mass of the 

pendulum, the damping coefficient, the inertias 

of the arm and the pendulum, respectively. The 

coefficient matrices of the 0, ¢, 0, q~, which 

contain the nonlinear coupled term with each 

states, can be linearized near the upright position. 

And, the state equation form of (1) is 

x ( t ) - -Ax  ( t )+Bu  (t) (2) 

A= 

0 0 1 0 

0 0 0 1 

FH cG 
0 F2_E G F2_E G 0 

EH cF 
0 - - 0  

U-EG F 2-EG 

E =Jarm + m R  2, 
H :  - mgl ,  
x ( t ) = [ O  ¢ O ¢]T 

0 
0 

G ,B= 
F2-  EG 

F 
F2-  EG 

F = m l R ,  G =Jpen + m l  2, 

Table 1 shows the system parameters estimated 

by the signal compression method and measured 
by experiments. 
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Table 1 System parameters of the plant 

Parameter ]~,-,, ]~,~ m R l c 

Value 0.083 0.0015 0. I2 0.29 0.126 

Unit kgm 2 kgm 2 kg 

0.16 

l"fl Nms/rad 

3. Control System Design of  the 

Rotational Inverted Pendulum 

3.1 Output feedback sliding mode controller 

design 

The procedure for designing a sliding mode 

control system is composed of two phases. The 

first phase consists of selecting a sliding surface 

or a switching surface in order to assure a desired 

sliding motion. The second phase consists of selec- 

ting a control law that will force the trajectories 

of system states onto the sliding surface and keep 

them on the surface. 

3.1.1 The selection of  sliding surface 

To select the sliding surface by using the output 

information and to determine the parameters of 

the reduced order observer and controller, a line- 

ar t ime-invariant  model with some uncertainties 

is considered as follows : 

{~(t)  = A x ( t )  +Bu( t )  +f ( t ,  x, u) 
y(t) = C x ( t )  (3) 

where x=-R n, U ~ R  m, y ~ R  p with m_<p_<n and 

f ( . )  is an unknown function, which represents 

model uncertainties in the system that satisfy the 

matching condition. It is assumed that the trans- 

formation, T, of coordinates on the matrices A, B 

and C exists such that 

A----[All Axe] B=[BOI, C=-[0  T ] L A z l  A22J' (4) 

where 

A°l A°2 I 
o IA~I 

An= 0 A= / I (~) 
A o  LAm I 0 ~211 z2 j 

and, A u ~ R  (n-m)×(n-m), B2~R mxm, T ~ R  p×p. A°l E 
Rr×r, A0 ~R(n-p r)x(n-p-r) AOa~R(P-m)x(n-p-r) 1~22 , " 

In order to use the output information in the 

selection of the sliding surface and the corre- 

sponding control law, the switching surface is 

supposed to have the form s(t) = F C x ( t ) .  And let 

us change F to be the canonical form of the 

premise, that is, 

S = { x E R n ;  F C x ( t ) = 0 } = [ F 1 C I + F z ] x ( t )  (6) 

where 

El  = [0(p-rn)×(n-p)l(p-rn)], 
F ~ R m × P  F I ~ R  mx(p-m), F e a R  (mxm) 

Then, the reduced order sliding motion is govern- 

ed by a free motion with system matrix 

A~I = Au -- AlzF2 -1F1CI (7) 

Define G=Fz- IF1 ,  then the sliding surface design 

problem is equivalent to an output feedback sta- 

bilization problem for the system (Am A,2, C1). 

If the original system has invariant zeros, A12 and 
A~ in (4) and (5) are partitioned as [A1zl A,22] r 

m A m ? r respectively and the new sub- and, A~2, 1221 
system (~,u, A122, C1) can be considered as 

X H =  [ A~% Aln22] C1 = [0(p-m)x(n-p r)I(p-m)] (8) 
LA°~ A~ J' 

As a result it can be shown (Lee and Aoshima, 

1986) that the spectrum of A~I contains the in- 

variant zeros of (A, B, C) and in particular 

/~(An--A~zGCx) =A(A°I) [--J/~(JZ~ll A~22G(~) (9) 

If the pair (A, B) is completely controllable then 
the pair (Air, A~zz) is completely controllable 

and the pair (,~n, (~1) is completely observable 

by construction and thus if the triple (,~m A12~, 
C~) satisfies the Kimura-Davison conditions, 

output feedback pole placement methods can be 

used to place poles appropriately. However, if 

the Kimura-Davison conditions are not satisfied 

by the nominal triple, the system can be augment- 
ed by an appropriately dimensioned dynamic com- 

pensator, which dynamics is as tbllows : 
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:~c(t) = H x c ( t )  + D y ( t )  (10) 

where the matrices H E R  tq×q) and D ~ R  q×p are to 

be determined.  Define a new sliding surface in the 

augmented states space, formed from the plant  

and compensa tor  state spaces, as 

Sc={(X, Xc) ~Rn+q ; F e x ¢ + F C x = 0  } (11) 

where F c E R  m×q and F ~ R  m×p. Define D l ~  
Rqx(p m), D z ~ R q × m  as 

[DL D2] = D T  (12) 

If the states of the uncertain system are parti-  

t ioned as 

x = I X ' l  ~ n - m  13) 
LX2J ~ 111 

then the compensa tor  can be written as 

~i~(t) = H x c ( t )  +D1Clx , ( t )  +D2x2(t) 14) 

And.  consider  the system 

x(t) = A n ~ ( t ) + A r e S ( t )  
y(t)  = (?x~ (t) (15) 

where fi and .~ are the (fictitious) inputs and out- 

puts, respectively. After passing through several 

phases, a reduced order  Luenburger  observer  for 

the system (15) and the state feedback law using 

the observer  states and the outputs  are given by 

i ( t )  = H z ( t )  q--D~,~(t) +Dzfi ( t )  
16) 

fi(t) =--Kcz(t) - -Ky~( t )  

where 

H = A ° 2 + L A ° ~ ,  D , = A ~ z + L A ~  - (A°=+LA°~) L, 

D2=Alzzl+LA12zz, K c = K b  K y = K 2 - K I L ,  

K n - - r  p p - - m  
- -  [~ ~] 

and L ~ - R  (n-p-r)xCp-rn) is any gain matrix so that 

A2°z+LA2°l is stable, K is stable and part i t ion 

the state feedback matrix for the cont ro l lab le  pair  

( ,~ , ,  AI~) so that ( ,~.n--A,zzK) is stable. And,  

A~zzx and A~zzz are the sub matrices of  At=2 as 

follows : 

[A,2m I ~n--p--r (17) 
AI2Z=LAI222/ ~ p - - m  

Then the closed system from (15) in conjunct ion  

with (16) is as follows : 

[~(t) 1 [ , ~ n - - A I z z K y C 1 -  A122Kc-] Vx (t) 
(t) J = L ( D , - - D 2 K y ) ( ~  H--D2KcJLz( t )  I (18) 

3.1.2 The se lec t ion  of  control  l aw 

Assume that there are r (s table  invariant  

zeros and par t i t ion the state vector x~ from (13) 

so that 

Ix ir x l =  ~ n - - p - - r  (19) 

x12. ~ p - - m  

and define a new dynamical  system by 

Zr (t) = A°~z, - (t) + A°2xc (t) 
(20) m OL X + (AIzI--A12 ) 12(t) --AlalX2(t) 

and augment  (14) with (20) to tbrm a new com- 

pensator.  

~c(t) I A°l A°=l~c+[(Aln21--A°2) AlZl]T'ry(t)(.21) 
= k  0 H J k Dl O2J  

Also, tile sl iding surface Sc can be written as 

S¢={ ~,~R n : S:~=0 } (22) 

where S=Fz[0m×r Kc Ky im], ~,= [Zr x Xc T xtX~ x~] T, 

and a l inear feedback component  

u ~ ( t ) = - [ A  ' S , ~ - A  ~ S ] 9 . ( t )  (23) 

where A = S B .  ~ C R  re×m, is stable design matrix. 

and 

A°l AI°2 A mxzl-A02k A121 ] 

, =  0 H D1 2 ; 2  
0 A ° A m A o i 21 21 - -  21L 

A2u Az,2 A213-A21~L A22 

The sl iding mode control  law is then 

U(t) =U1(t)  +Un(t)  (24) 

where 

p A - l s g n ( P s ( t ) )  for s( t)=#0 
Un(t) : 0 lbr  s ( t ) = 0  (725) 

P is the unique posit ive definite solut ion to the 

Lyapunov  equat ion 

p ~ +  ~ T p = _ l  (26) 

p is defined as fo l lows:  (Young,  1993) 

,c II AII II u, (t)[I + II AII ~ (y) + r2 - (27) 
P - -  l - x z ( A )  
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where )'2 is a small positive constant, K and 

Kz(A) are small positive real numbers which 

satisfy the following conditions 

K<V"Amm(BTB), Kx(A)II B-1 ]l<l (28) 

And, the sgn( ' )  in Eq. (25) is replaced by the 

sigmoid-like function v~(s) to suppress the chat- 

tering of the control input. 

Ps(t) 
re(s) -- (29) 

I[ Ps(t)I1+~ 

where $ is a small positive constant. 

3.2 Disturbance observer design 
The basic concept of the disturbance observer 

is to reconstruct external disturbances by the 

inverse model and to cancel external disturbances 

by reconstructed ones in the feedback. Figure 2 

shows the control system structure with the dis- 

turbance observer. In Fig. 2, u, d, y, d are control 

input, disturbance, output and estimated disturb- 

ance respectively. The system output y(s) in Fig. 

2 is represented as follows: 

y(s) = G d y d  (s) + G u y u ( s )  + G ~ , y ~ ( s )  (30) 

where 

P P n ( 1 - Q )  
Gdy(S)  = Q(P--Pn) +Pn 

PPn 
Guy (s) -- 

Q(P--Pn) + P ,  

PQ 
G.~y (s) -- 

Q(P--Pn) +Pn 

One of the most important things in the design of 

the disturbance observer is to select the Q(s), 

which has an effect on the robustness of the 

system and the performance of disturbance rejec- 

tion. If Q ( s ) ~ 1 ,  the disturbance observer can 

make the whole system to be robust because of 

eliminating low frequency external torques and 

differences between the nominal plant and the 
real one, and if Q(s) ~-0, there is no noise effects 

and the observer effects on the system does not 

nearly exist. Therefore. to eliminate the modeling 

error and external torque in the low frequency 

range and to eliminate sensor noises in the high 

Friction ] 
~[  cornpensator ~ 

+i ,, 
U + r - ,  + , - ~  

I 
[4 . . . . . . .  
I 

/____ 

Fig. 2 

+q 

d ! 

DisturNmce Observer 

Structure of the disturbance observer 

frequency range the shape of the frequency re- 

sponse is Q(s) ~- 1 at the low frequency range and 

Q(s) -~0 at the high frequency range. 

In this paper the form of the Q(s) which was 

proposed (Umeno et al., 1993) has constructed 2 

relative degree of freedom as follows : 

N-2 
1 + ~  ak(sr) k 

Q(s) - k=l (31) 
N 

1+52 ak(sr) k 
k=l 

where N is the order of the low pass filter Q(s), 

ak is a tuning parameter and r is the inverse of 

cut-off frequency, which is appropriately selected 

by considering the frequency ranges of the plant 

dynamics, disturbances and sensor noises. And to 

avoid the phase lag phenomenon in the higher 

order filter design, a modified 3rd-order filter is 

selected. 

3/3Zs + a/~3 (32) 
Q(s) = s3+3aflsZ+3132s+at~3 

The parameters and a are ,8 used to improve the 

compensation of phase lag and performance of 

the robust stability, selected as a=0 .3  and /~=46 

in this paper. 
In designing ol" the control system with dis- 

turbance observe,, feedback control is gene,ally 

carried out at the same time to compensate the per- 

[brmance of command tracking. Especially, since 

the disturbance observer is not proper in the large 

model uncertainties, the modeling error should 

be minirnized to have good performance o[" the 
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0.6 

Fig. 3 

~J 

0.6 
c = 0.126 

0 
-0.6 

0 
-0.6 

Estimated coulomb and viscous friction 

Interface _ _  /9 

~ W  Control ~ 
Board I Encoder . l 

Serve Drive 

I-Po . l L j  
L ~ p  / 

DC motor 

Fig. 5 Schematic diagram of the experimental setup 

Fig. 4 

Oattatt Feedback 
Slidhlg Mode Controller Plant 

Output feedback sliding mode controller with 

the disturbance observer 
Fig. 6 Photograph of the experimental setup 

disturbance observer. So the friction compensator 

is added in this system, to consider Coulomb fric- 

tion torque in the joint between the horizontal 

arm shaft and the DC motor. Figure 3 shows the 

friction model which is considered in this paper. 

The c is a coefficient of the viscous friction. 

Figure 4 shows the structure of the output feed- 

back sliding mode controller with a disturbance 

observer. 

4. Simulation and Experiment 

In order to show the performance and robust- 

ness of the OFSMC/DO system for the RIPS, it 

is compared with the LQ control and OFSMC 

systems through computer simulation and experi- 

ment. Figure 5 shows the schematic diagram of 

the experimental setup. And Figure 6 shows the 

photograph of the experimental setup. In this 

experiment, a low-pass filter with cut-off fre- 

quency of 100 rad/sec and damping ratio of 0.7 

is adopted to eliminate sensor noises. Tile sam- 

piing time is chosen 1 msec to avoid aliasing 

problems in the discretization process. 

4.1 S imulat ion  results  

Figure 7 shows the comparison of the regula- 

tion performance of the RIPS with initial posi- 

tion of 0.37 rad. The LQ control system has the 

smallest overshoot in the pendulum position and 

poor regulation performance of the horizontal 

arm position. The OFSMC system has also a big 

overshoot and poor regulation. And, the OFSMC/  

DO system has the biggest overshoot and shortest 

settling time in the pendulum position and out- 

standing regulation performance of the horizontal 

arm. Figure 8 shows the response of control sys- 

tems for the tappings, the magnitude of tappings 

considered are 0.05 rad near 2 sec and 0.1 rad 

near 3.5 sec. The LQ control system has a good 

performance of pendulum position regulating, but 

the perlbrmance of horizontal position is bad 

because the LQ control system is designed as a 

SISO system. And the OFSMC systems with/with- 

out DO system have good transient responses for 

the pendulum position control. However, in the 

case of the performance of horizontal position 

control, the OFMC system with DO is more 

robust regulation performance than the OFMC 
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Simulation result of the pendulum position 
for swing-up control 

system without DO. Also, the swing up motion is 

performed and the O F S M C / D O  system is used 

tbr swing up. Fig. 9 shows the time response from 

the bottom position to the top position of the 

pendulum. 

4.2 Experimental results 

Figure 10 shows the time responses of the 

pendulum and horizontal arrn with initial posi- 

tion of 0.37 rad for tile OFSMC/DO, OFSMC, 

and LQ control systems. Experimental results are 

some difference with simulation results, because 

there is an uncertainty in real system that is not 

considered during designing control systems. The 
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(bi Horizontal position 

Experimental result with slushing effect 

LQ control  system has the worst response due to 

model  uncertainties such as actuator dynamics 

and nonl inear  effects of  the plant, and the pendu- 

lum is sometimes fallen down. In the response of  

the horizontal  arm, the arm is shaken continu- 

ously. In the case of  the O F S M C  wi th /wi thou t  

DO system has more good regulat ion performance 

than LQ system. 

To show the robust performance of  those con- 

trol systems, the tip with 60g water which is ['or 

making a disturbance is attached to the end of  

the pendulum. As shown in Fig. 11, the O F S M C /  

DO system also has more good performance of  

the regulations than the per lbrmance o f  LQ and 

O F M C  even when the surface of  the water is 

s lopping from side to side. However,  the posit ion 

of  the pendulum and horizontal  arm are con- 

t inuously shaken Ibr all control  systems. Figure 12 

shows the time response tbr the tapping dis- 

turbances, which apply the plant in the steady 

states, every 2 sec, two times• The O F S M C / D O  

system has better perlbrmance than the O F S M C  

system and the response of  the LQ control  sys- 

tem is omitted because of  too bad pertbrmance. 

Figure 13 shows the result of  the swing-up  con- 

trol using the proposed control  method. This 

result shows that the proposed control  method 

has ability to implement  swing-up  system which 

starts from stable posit ion to maintain the unsta- 

ble inverted position• From these experimental  
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Fig. 13 Experimental result for swing-up control 

results, it is found that the OFSMC/DO system 

has ability to overcome the limit of the control 

system to be constructed on the base of the linear 

model and robustness under the arbitrary initial 

position and initial velocity conditions. 

5. Conclusion 

The dynamic equations of the RIPS are mo- 

deled by the signal compression method and the 

OFSMC/DO method is proposed and applied to 

a RIPS which is an under-actuated system and 

has the problem of unattainable velocity state. 

The OFSMC/DO method is a sliding mode con- 

trol method using the parameterization of both 

the hyperplane and the compensator for output 

feedback with disturbance observer which esti- 

mates the disturbance and some model uncertain- 

ties. The results of simulation and experiment 

show that the OFSMC/DO system is able to stabi- 

lize and has better performance and robustness 

compared with the OFSMC and LQ control sys- 

tems for under-actuated systems such as RIPS 

and robots. Especially, the experimental results 

show that the OFSMC/DO system is very useful 

in real environmental problems such as analog 

sensor noises and external disturbances. 
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